生活中有很多看似随机数的数据,如果和时间序列高度关联,其实这些随机数是可以提前预测的,但我这里说的可以提前预测并不是指能预测出具体的精确的数字,而是一个大概的数据范围或是走势方向。
比如说,某个红绿灯十字路口,每小时通过的车辆数量是一个随机数,但是,这个数据是和时间序列高度关联的。
从单日的数据上来看,在上下班高峰时段车辆通过的流量大,其它时段会相对的平缓。
从一年的数据上来看,在节假日出行高峰的日子车辆的通过流量会比平常日子大。
从多年的历史数据上来看,每年的车辆数量都会相对的逐步变大,因为有车的人越来越多了,加上城镇化建设的推进,越来越多的人集中涌向城市,水涨船高,整个城市的车辆拥有量变大,通过这个路口的车辆数量也会相应变大。
所以,和时间序列高度关联的随机数,是可以提前预测未来的数据范围和走势方向的。
如果我们把这个思路应用到其它领域,比如说股票,那也是可以提前预测的。
比如说,在国家发布某些重大行业政策后,肯定会引起股市的波动,所以投资者要用程序随时监测国家的政策发布时间,在政策发布时及时进行分析,预判是利好还是利空,然后及时进行买入或卖出操作,就能实现早进场早盈利或提前避免损失。
现实生活中,只要是有人参与的,很多都是和时间序列相关,只要学会用数据采集、数据分析、数据挖掘,就可以帮你实现更多的盈利。